Uniform amenability and hyperfiniteness of treeable equivalence relations

Andrea Vaccaro joint with Petr Naryshkin

Universität Münster

Let X be a standard Borel space and let $E \subseteq X^2$ be a countable Borel equivalence relation (CBER). Let X be a standard Borel space and let $E \subseteq X^2$ be a countable Borel equivalence relation (CBER).

We are interested in hyperfiniteness of treeable CBERs.

- *E* is **hyperfinite** if $E = \bigcup_{n=1}^{\infty} E_n$ where $E_n \subseteq E_{n+1}$ and each E_n is a finite CBER.
- *E* is **treeable** if there is an acyclic Borel graph $\mathcal{G} = (X, R)$ such that $E = E_{\mathcal{G}}$.

Let X be a standard Borel space and let $E \subseteq X^2$ be a countable Borel equivalence relation (CBER).

We are interested in hyperfiniteness of treeable CBERs.

- *E* is hyperfinite if $E = \bigcup_{n=1}^{\infty} E_n$ where $E_n \subseteq E_{n+1}$ and each E_n is a finite CBER.
- *E* is **treeable** if there is an acyclic Borel graph $\mathcal{G} = (X, R)$ such that $E = E_{\mathcal{G}}$.

A tree with a cycle.

Hyperfinite CBERs are treeable and amenable.

Hyperfinite CBERs are treeable and amenable.

Weiss 1984, Slaman–Steel, 1988: *E* is hyperfinite iff $E = E_{\mathbb{Z}}^X$, for some Borel $\mathbb{Z} \curvearrowright X$.

Treeable CBERs are not hyperfinite in general (e.g. the free part of the shift action $F_2 \sim 2^{F_2}$).

Hyperfinite CBERs are treeable and amenable.

Weiss 1984, Slaman–Steel, 1988: *E* is hyperfinite iff $E = E_{\mathbb{Z}}^X$, for some Borel $\mathbb{Z} \curvearrowright X$.

Treeable CBERs are not hyperfinite in general (e.g. the free part of the shift action $F_2 \sim 2^{F_2}$).

Hyperfinite CBERs are moreover **(Frechet-)amenable**, as defined by Jackson–Kechris–Louveau. Whether the vice versa holds is among the most challenging open questions in the subject.

Hyperfinite CBERs are treeable and amenable.

Weiss 1984, Slaman–Steel, 1988: *E* is hyperfinite iff $E = E_{\mathbb{Z}}^X$, for some Borel $\mathbb{Z} \curvearrowright X$.

Treeable CBERs are not hyperfinite in general (e.g. the free part of the shift action $F_2 \sim 2^{F_2}$).

Hyperfinite CBERs are moreover **(Frechet-)amenable**, as defined by Jackson–Kechris–Louveau. Whether the vice versa holds is among the most challenging open questions in the subject.

- Connes–Feldman–Weiss, 1981: If G is countable **amenable** and $G \curvearrowright X$ is Borel, then E_G^X is μ -hyperfinite, $\mu \in M(X)$.
- Weiss, 1984 Suppose G is countable, amenable and $G \curvearrowright X$ is Borel. Is E_G^X hyperfinite?

The answer is known to be positive for many classes of groups.

Amenable actions, amenable CBERs

The connection between **hyperfiniteness** and **amenability** goes beyond the case of amenable group actions.

Amenable actions, amenable CBERs

The connection between **hyperfiniteness** and **amenability** goes beyond the case of amenable group actions.

Dougherty–Jackson–Kechris, 1994: $E_{F_2}^{\partial F_2}$, where $F_2 \sim \partial F_2$ is the canonical (amenable!) action on the **Gromov** boundary of the free group, is hyperfinite.

Marquis–Sabok, 2020: $E_G^{\partial G}$ is hyperfinite, for the boundary action $G \curvearrowright \partial G$ of any finitely generated **hyperbolic group**.

The latter result has been expanded in several directions (e.g. Karpinski, Naryshkin–V., Oyakawa).

Amenable actions, amenable CBERs

The connection between **hyperfiniteness** and **amenability** goes beyond the case of amenable group actions.

Dougherty–Jackson–Kechris, 1994: $E_{F_2}^{\partial F_2}$, where $F_2 \sim \partial F_2$ is the canonical (amenable!) action on the **Gromov** boundary of the free group, is hyperfinite.

Marquis–Sabok, 2020: $E_G^{\partial G}$ is hyperfinite, for the boundary action $G \sim \partial G$ of any finitely generated **hyperbolic group**.

The latter result has been expanded in several directions (e.g. Karpinski, Naryshkin–V., Oyakawa).

Jackson–Kechris–Louveau, 2002: Are amenable treeable CBERs hyperfinite?

The main results

Theorem (Naryshkin–V., 2025)

Let $\mathcal{G} = (X, R)$ be an acyclic Borel graph with bounded degree. If $E_{\mathcal{G}}$ is **uniformly amenable with respect to** $\rho_{\mathcal{G}}$, then $\operatorname{asdim}_{B}(X, \rho_{\mathcal{G}}) < \infty$, and in particular $E_{\mathcal{G}}$ is hyperfinite.

The main results

Theorem (Naryshkin–V., 2025)

Let $\mathcal{G} = (X, R)$ be an acyclic Borel graph with bounded degree. If $E_{\mathcal{G}}$ is **uniformly amenable with respect to** $\rho_{\mathcal{G}}$, then $\operatorname{asdim}_{B}(X, \rho_{\mathcal{G}}) < \infty$, and in particular $E_{\mathcal{G}}$ is hyperfinite.

Corollary (Naryshkin–V., 2025)

Let $F_k \curvearrowright X$ be a continuous, free, amenable action on a σ -compact Polish space. Then $E_{F_k}^X$ is hyperfinite.

Corollary (Naryshkin-V., 2025)

Let G be a countable amenable group and $G \curvearrowright X$ a Borel action. If E_G^X is treeable, then it is hyperfinite.

Some notation

A Borel extended metric space (X, ρ) is a standard Borel set with a Borel metric ρ that can also have value ∞ .

$$E_{\rho}:=\{(x,y)\in X^2:\rho(x,y)<\infty\}.$$

Some notation

A Borel extended metric space (X, ρ) is a standard Borel set with a Borel metric ρ that can also have value ∞ .

$$E_{\rho}:=\{(x,y)\in X^2:\rho(x,y)<\infty\}.$$

Example. A Borel graph $\mathcal{G} = (X, R)$ with the shortest path metric $\rho_{\mathcal{G}}$. In this case $E_{\rho_{\mathcal{G}}} = E_{\mathcal{G}}$.

If G is a finitely generated group with finite symmetric set of generators S, and $G \curvearrowright X$ is a Borel action, the **Schreier graph** $\mathcal{G} = (X, R)$ is defined as

 $xRy \iff \exists g \in S \setminus \{e\}$ such that gx = y.

Borel asymptotic dimension

Definition (Conley–Jackson–Marks–Seward–Tucker-Drob, 2023)

Let (X, ρ) be an extended metric space. The **Borel asymptotic** dimension of (X, ρ) , denoted $\operatorname{asdim}_B(X, \rho)$, is the smallest $d \in \mathbb{N}$ such that for every r > 0 there is a ρ -uniformly bounded Borel equivalence relation E such that $B_{\rho}(x, r)$ meets at most d + 1E-classes, and it is ∞ if no such d exists.

Borel asymptotic dimension

Definition (Conley–Jackson–Marks–Seward–Tucker-Drob, 2023)

Let (X, ρ) be an extended metric space. The **Borel asymptotic** dimension of (X, ρ) , denoted $\operatorname{asdim}_B(X, \rho)$, is the smallest $d \in \mathbb{N}$ such that for every r > 0 there is a ρ -uniformly bounded Borel equivalence relation E such that $B_{\rho}(x, r)$ meets at most d + 1E-classes, and it is ∞ if no such d exists.

Theorem (Conley–Jackson–Marks–Seward–Tucker-Drob, 2023)

If (X, ρ) is proper and asdim_B $(X, \rho) < \infty$ then E_{ρ} is hyperfinite.

Theorem (Conley–Jackson–Marks–Seward–Tucker-Drob, 2023)

If $(\rho_n)_{n=1}^{\infty}$ are proper Borel extended metrics on X such that $\rho_n \leq \rho_{n+1}$, $E_{\rho} = \bigcup_{n=1}^{\infty} E_{\rho_n}$ and $\operatorname{asdim}_B(X, \rho_n) < \infty$, then E_{ρ} is hyperfinite.

Uniform amenability

Definition (Naryshkin–V., 2025)

Let (X, ρ) be a Borel extended metric space and let E be a CBER. E is **uniformly amenable with respect to** ρ if $E \subseteq E_{\rho}$ and if there are Borel maps

$$\lambda_n \colon E \to [0,1], \quad n \in \mathbb{N},$$

such that, with $\lambda_{n,x}(\cdot) := \lambda_n(x, \cdot)$,

- $\lambda_{n,x} \in \ell^1([x]_E)$ and $\|\lambda_{n,x}\|_1 = 1$, for every $x \in X$
- $\sup_{\{(x,y)\in E: \rho(x,y)< r\}} \|\lambda_{n,x} \lambda_{n,y}\|_1 \to 0$, for every r > 0.

Uniform amenability

Definition (Naryshkin–V., 2025)

Let (X, ρ) be a Borel extended metric space and let E be a CBER. E is **uniformly amenable with respect to** ρ if $E \subseteq E_{\rho}$ and if there are Borel maps

$$\lambda_n \colon E \to [0,1], \quad n \in \mathbb{N},$$

such that, with $\lambda_{n,x}(\cdot) := \lambda_n(x, \cdot)$,

- $\lambda_{n,x} \in \ell^1([x]_E)$ and $\|\lambda_{n,x}\|_1 = 1$, for every $x \in X$
- $\sup_{\{(x,y)\in E: \rho(x,y) < r\}} \|\lambda_{n,x} \lambda_{n,y}\|_1 \to 0$, for every r > 0.

Uniform amenability differs from **amenability** because of (2), where the latter only requires

$$\|\lambda_{n,x} - \lambda_{n,y}\|_1 \to 0$$
, for all *xEy*.

Uniformly amenable CBERs

Proposition

Let G be a finitely generated amenable group, let $G \curvearrowright X$ be a Borel action and let \mathcal{G} be the Schreier graph generated by a finite symmetric set of generators of G. Then E_G^X is uniformly amenable with respect to ρ_G .

Uniformly amenable CBERs

Proposition

Let G be a finitely generated amenable group, let $G \curvearrowright X$ be a Borel action and let \mathcal{G} be the Schreier graph generated by a finite symmetric set of generators of G. Then E_G^X is uniformly amenable with respect to ρ_G .

Poof. Let $(F_n)_{n=1}^{\infty}$ be a Følner sequence, and set

$$\lambda_n \colon E_{\mathcal{G}} \to [0, 1]$$

 $(x, y) \mapsto \frac{1}{|F_n|} |\{g \in G_n : gx = y\}|$

Uniformly amenable CBERs

Proposition

Let G be a finitely generated amenable group, let $G \curvearrowright X$ be a Borel action and let \mathcal{G} be the Schreier graph generated by a finite symmetric set of generators of G. Then E_G^X is uniformly amenable with respect to ρ_G .

Poof. Let $(F_n)_{n=1}^{\infty}$ be a Følner sequence, and set

$$\lambda_n \colon E_{\mathcal{G}} \to [0, 1]$$

 $(x, y) \mapsto \frac{1}{|F_n|} |\{g \in G_n : gx = y\}|$

Proposition

Let G be a finitely generated group G, X a compact Polish group and $G \curvearrowright X$ a continuous, amenable action. If G is as above, then E_G^X is uniformly amenable with respect to ρ_G .

The main results (again)

Theorem (Naryshkin–V., 2025)

Let $\mathcal{G} = (X, R)$ be an acyclic Borel graph with bounded degree. If $E_{\mathcal{G}}$ is **uniformly amenable with respect to** $\rho_{\mathcal{G}}$, then $\operatorname{asdim}_{B}(X, \rho_{\mathcal{G}}) < \infty$, and in particular $E_{\mathcal{G}}$ is hyperfinite.

Corollary (Naryshkin–V., 2025)

Let $F_k \curvearrowright X$ be a continuous free action on a σ -compact Polish space. If $E_{F_k}^X$ is amenable, then it is hyperfinite.

Corollary (Naryshkin–V., 2025)

Let G be a countable amenable group and $G \curvearrowright X$ a Borel action. If E_G^X is treeable, then it is hyperfinite.

Borel orientations

Let $\mathcal{G} = (X, R)$ be a Borel graph. A **Borel orientation** is a Borel subset $\vec{R} \subseteq R$ such that $\vec{R} \cap \vec{R}^{-1} = \emptyset$ and $\vec{R} \cup \vec{R}^{-1} = R$.

Borel orientations

Let $\mathcal{G} = (X, R)$ be a Borel graph. A **Borel orientation** is a Borel subset $\vec{R} \subseteq R$ such that $\vec{R} \cap \vec{R}^{-1} = \emptyset$ and $\vec{R} \cup \vec{R}^{-1} = R$.

Proposition

Let $\mathcal{G} = (X, R)$ be a Borel graph with bounded degree. If \mathcal{G} has a Borel orientation with out-degree at most 1, then $\operatorname{asdim}_B(X, \rho_{\mathcal{G}}) \leq 1$.

Proposition (Conley–Jackson–Marks–Seward–Tucker-Drob)

Suppose that $f: X \to X$ is Borel and bounded-to-one, and $\mathcal{G}_f = (X, R_f)$ where $xR_f y$ iff f(x) = y or f(y) = x. Then $asdim_B(X, \rho_{\mathcal{G}_f}) \leq 1$.

Proposition (Conley–Jackson–Marks–Seward–Tucker-Drob)

Suppose that $f: X \to X$ is Borel and bounded-to-one, and $\mathcal{G}_f = (X, R_f)$ where $xR_f y$ iff f(x) = y or f(y) = x. Then $asdim_B(X, \rho_{\mathcal{G}_f}) \leq 1$.

Proposition

Let $\mathcal{G} = (X, R)$ be a Borel graph with bounded degree. If \mathcal{G} has a Borel orientation with out-degree at most 1, then $\operatorname{asdim}_B(X, \rho_{\mathcal{G}}) \leq 1$.

Proof. $\mathcal{G} = \mathcal{G}_f$ where f is the following bounded-to-one Borel function

$$f(x) := egin{cases} y & ext{if } x \overrightarrow{R} y \ x & ext{otherwise} \end{cases}$$

Partial orientations

Proposition

Let $\mathcal{G} = (X, R)$ be a Borel graph with bounded degree. Suppose that for every r > 0 there is a Borel symmetric $Q \subseteq R$ such that

• $ho_{\mathcal{G}}(q_0,q_1)\geq r$ for all $q_0,q_1\in Q$ distinct,

• $(X, R \setminus Q)$ has a Borel orientation with out-degree at most 1. Then $\operatorname{asdim}_B(X, \rho_{\mathcal{G}}) \leq 3$.

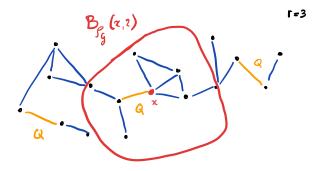
Partial orientations

Proposition

Let $\mathcal{G} = (X, R)$ be a Borel graph with bounded degree. Suppose that for every r > 0 there is a Borel symmetric $Q \subseteq R$ such that

• $ho_{\mathcal{G}}(q_0,q_1)\geq r$ for all $q_0,q_1\in Q$ distinct,

• $(X, R \setminus Q)$ has a Borel orientation with out-degree at most 1. Then $\operatorname{asdim}_B(X, \rho_{\mathcal{G}}) \leq 3$.



Let $\mathcal{G} = (X, R)$ be an acylcic Borel graph of bounded degree and such that $E_{\mathcal{G}}$ is uniformly amenable with respect to $\rho_{\mathcal{G}}$. Fix r > 0, and find a Borel map

$$\lambda \colon E_{\mathcal{G}} \to [0,1],$$

such that

•
$$\lambda_x \in \ell^1([x]_\mathcal{G})$$
, $\|\lambda_x\|_1 = 1$, for every $x \in X$,

• $\|\lambda_x - \lambda_y\|_1 < 1/12$ if $\rho_{\mathcal{G}}(x, y) < r + 2$.

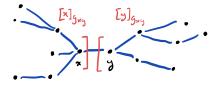
Let $\mathcal{G} = (X, R)$ be an acylcic Borel graph of bounded degree and such that $E_{\mathcal{G}}$ is uniformly amenable with respect to $\rho_{\mathcal{G}}$. Fix r > 0, and find a Borel map

$$\lambda \colon E_{\mathcal{G}} \to [0,1],$$

such that

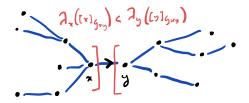
Т

•
$$\lambda_x \in \ell^1([x]_{\mathcal{G}}), \|\lambda_x\|_1 = 1$$
, for every $x \in X$,
• $\|\lambda_x - \lambda_y\|_1 < 1/12$ if $\rho_{\mathcal{G}}(x, y) < r + 2$.
Take xRy .



Let
$$\mathcal{G}_{xy} = (X, R \setminus \{(x, y), (y, x)\})$$
. Then
 $\lambda_x([x]_{\mathcal{G}_{xy}}) + \lambda_x([y]_{\mathcal{G}_{xy}}) = 1$ and $\lambda_y([x]_{\mathcal{G}_{xy}}) + \lambda_y([y]_{\mathcal{G}_{xy}}) = 1$

Let $R_0 := \{(x, y) \in R : \lambda_x([x]_{\mathcal{G}_{xy}}), \lambda_y([y]_{\mathcal{G}_{xy}}) \notin [5/12, 7/12]\}$ and orient $x \overrightarrow{R}_0 y$ only if $\lambda_x([x]_{\mathcal{G}_{xy}}) < \lambda_y([y]_{\mathcal{G}_{xy}})$.

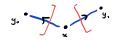


Let $R_0 := \{(x, y) \in R : \lambda_x([x]_{\mathcal{G}_{xy}}), \lambda_y([y]_{\mathcal{G}_{xy}}) \notin [5/12, 7/12]\}$ and orient $x \overrightarrow{R}_0 y$ only if $\lambda_x([x]_{\mathcal{G}_{xy}}) < \lambda_y([y]_{\mathcal{G}_{xy}})$.



This has a number of consequences:

 \vec{R}_0 has out-degree ≤ 1 .



 $\lambda_x([y_0]_{\mathcal{G}_{xy_0}}) + \lambda_x([y_1]_{\mathcal{G}_{xy_1}}) > 1$

Let $R_0 := \{(x, y) \in R : \lambda_x([x]_{\mathcal{G}_{xy}}), \lambda_y([y]_{\mathcal{G}_{xy}}) \notin [5/12, 7/12]\}$ and orient $x \overrightarrow{R}_0 y$ only if $\lambda_x([x]_{\mathcal{G}_{xy}}) < \lambda_y([y]_{\mathcal{G}_{xy}})$.

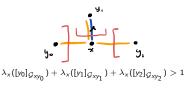


This has a number of consequences:

$$\vec{R}_0$$
 has out-degree ≤ 1 .

Set $R_1 := R \setminus R_0$. Then $\deg_{R_1}(x) + \deg_{R_0}^{out}(x) \le 2$.

 $\lambda_x([y_0]_{\mathcal{G}_{xy_0}}) + \lambda_x([y_1]_{\mathcal{G}_{xy_1}}) > 1$

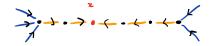


Set $\mathcal{G}_1 = (X, R_1)$, then deg $(\mathcal{G}_1) \leq 2$.

Case 1. $[x]_{\mathcal{G}_1}$ has only one leaf y with deg $_{R_0}^{out}(y) = 1$.

Case 1. $[x]_{\mathcal{G}_1}$ has only one leaf y with deg^{out}_{\vec{R}_0}(y) = 1.

Case 2. $[x]_{\mathcal{G}_1}$ has no leaves with out-degree 1.



Case 1. $[x]_{\mathcal{G}_1}$ has only one leaf y with deg $_{R_0}^{out}(y) = 1$.

Case 2. $[x]_{\mathcal{G}_1}$ has no leaves with out-degree 1.

Case 3. Both leaves in $[x]_{\mathcal{G}_1}$ have out-degree 1.



because of measure restrictions.

Summarizing:

- use the measure given by uniform amenability to define a partial orientation.
- enlarge the orientation so that the left-over, non-oriented part Q is composed by a Borel set of sparse edges that make all components of \mathcal{G}_1 finite, plus the 'central' edges in connected components with two leaves with out-degree 1.

Summarizing:

- use the measure given by uniform amenability to define a partial orientation.
- enlarge the orientation so that the left-over, non-oriented part Q is composed by a Borel set of sparse edges that make all components of \mathcal{G}_1 finite, plus the 'central' edges in connected components with two leaves with out-degree 1.

We are thus in position to apply

Proposition

Let $\mathcal{G} = (X, R)$ be a Borel graph with bounded degree. Suppose that for every r > 0 there is a Borel symmetric $Q \subseteq R$ such that

• $ho_{\mathcal{G}}(q_0,q_1)\geq r$ for all $q_0,q_1\in Q$ distinct,

• $(X, R \setminus Q)$ has a Borel orientation with out-degree at most 1. Then $\operatorname{asdim}_B(X, \rho_{\mathcal{G}}) \leq 3$. Summarizing:

- use the measure given by uniform amenability to define a partial orientation.
- enlarge the orientation so that the left-over, non-oriented part Q is composed by a Borel set of sparse edges that make all components of \mathcal{G}_1 finite, plus the 'central' edges in connected components with two leaves with out-degree 1.

We are thus in position to apply

Proposition

Let $\mathcal{G} = (X, R)$ be a Borel graph with bounded degree. Suppose that for every r > 0 there is a Borel symmetric $Q \subseteq R$ such that

• $ho_{\mathcal{G}}(q_0,q_1)\geq r$ for all $q_0,q_1\in Q$ distinct,

• $(X, R \setminus Q)$ has a Borel orientation with out-degree at most 1. Then $\operatorname{asdim}_B(X, \rho_{\mathcal{G}}) \leq 3$.

Thank you!